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ABSTRACT 

Three  recent papers  [1, 2, 3] developed the basic concepts of a spectral theory 
for matrix and operator  monic polynomials.  In this paper  we cont inue the study, 
replacing the requi rement  of monicness  by a weaker  condition. 

Introduction 

This paper is an extension of the theory developed in [1, 2, 3] for monic 

polynomials. Really we require here that the polynomials have a finite number  

of spectral points only. This extension leads to complications which make it 

necessary to consider the spectrum at infinite. 

The present paper is the first of three parts. The  first two parts are concerned 

with the finite dimensional case, and the third with the infinite dimensional case. 

In the second part will be studied the influence of the spectral structure at finite 

points only. 

The basic strategy of this paper is to reduce the problems for non-monic 

polynomials to problems for monic polynomials and then to apply the results of 

[1, 2, 31 . 

w General definitions 

Let C,  be the complex linear vector space of dimension n, and let B,  be the 

algebra of all n x n matrices with complex entries. Let 

L(A) = ~', MAj 
j=l  

be a matrix polynomial with Aj E B, and argument )t E C. The point )to E C is 
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an eigenvalue of L (it) if det L (A0) = 0. The set of all eigenvalues of L (A) is called 

the spectrum of L(i t) ,  and denoted by or(L). The polynomial L(A) is regular if 

c r ( L ) ~  C or equivalently if det L (A))~ 0. In this case the spectrum o,(L) is either 

a finite set or else it is empty. 

In this paper we deal only with regular polynomials so the word "regular"  will 

be omitted. We suppose also that L ( 0 ) = / ,  and call such polynomials comonic. 

In fact there is no loss of generality because if L (a)  is invertible we can shift the 

argument and study the polynomial L - I ( a )  �9 L(A + a)  in place of L(i t) .  

Let L(A) be matrix polynomial and let AoGo'(L).  Then there exists a 

holomorphic vector valued function 4,(it) with values in C, and 4,(ito)~ 0, such 

that the function L(it)4,( i t)  vanishes at the point )to. We" call 4,(A) a root 

function of L(A) corresponding to Ao. The order of Ao as a zero of L(it)4,(A) is 

called the multiplicity of 4, (it), and the vector 4,0 = 4, ()to) an eigenvector of L (it) 

corresponding to A0. The eigenvectors corresponding to )to form a linear space: 

KerL(it0).  By the rank of an eigenvector 4,0 we mean the maximum of the 

multiplicities of all root functions 4, (it) such that 4,(ito) = 4,0. The rank of 4,0 will 

be denoted rank4,0. A root function 4,(it) such that 4,(it0) = 4,o and the 

multiplicity of 4, (A) is equal to rank 4,~ is called a maximal root function. Note 

that if 

4 , ( i t )  = 4,, ( i t  - i t o )  
j ~ O  

is a maximal root function and if r = rank4,o, then the chain of vectors 

4,0, 4 , ,"  �9 ", 4,,-1 is a Jordan chain of L (it) corresponding to the eigenvalue )to, i.e. 

.=o ~ L~176 = 0, j = 0 , . - . ,  r - 1. 

The vectors 4,1, �9 �9 �9 4,,-~ are called generalized eigenvectors corresponding to 4,0 

and )to. 

For every eigenvalue )to of the matrix polynomial L (it) we define a canonical 

set of eigenvectors and generalized eigenvectors in the following way: let 

4,~o'E KerL(i to)  be an eigenvector with maximal rank. Let 

4,(1,(it) = ~ 4,,1,(it_ it0Y 
1 =o  

be a maximal root function such that 4,")(ito) = 4,~o 1). Suppose that the root 

functions 

4,(k,(it) = ~ 4,~(it  _ ito)', k = 1 , - . - , j  - 1, 
i=O 
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are constructed. Let ~bo ~ be an eigenvector with maximal rank in some direct 

complement in Ker L ()to) of the linear span of the vectors ~b ~ol), �9 �9 -, 4,0 ~ Let 

4,~'(x) = ~ 4,,%~- ,~o)' 
i=O 

be a maximal root function such that ~b~ = 4,o ~ By a canonical set of 

eigenvectors and generalized eigenvectors we mean the ordered set 

4 , ~ 0 , , . . . . ~ , )  . , t ,~o2) , . . . .~2)  . . . .  4,~ok~,... ~,~) 

where rs = rank ,bo ~ j = 1,. �9  k ; k = dim Ker t ()~o). We write such a canonical 

set of eigenvectors and generalized eigenvectors in matrix form: 

X ( / ~ o )  = ( ~ ) ( 0 1 ) . . .  t~rld'(') 1(~00"/(2) " " "  W'r2-1"4"(2) . . .  ( D ( O k ) , , ,  ~rk-l);d~(k) " 

J(,~0) = diag (J1, . /2 ,"  ", J~), 

where J~ is Jordan cell of size r~ with eigenvalue Ao, and diag(Ji,  J2 , - - - , Jk )  

denotes the square block diagonal matrix whose main diagonal is given by 

J1,  J 2 , "  �9 ", Jk. Hence X(A0) is an n x r matrix and J(A0) is an r • r matrix, where 

r = E~=lri is the multiplicity of )to as a root of de tL(A) .  

The pair of matrices (X(Ao), J(Ao)) is a canonical pair of L (A) corresponding to 

)to. Taking a canonical pair (X(A,),J(Ai)) for every eigenvalue Aj of L(A), we 

define a finite canonical pair (Xv, Jr)  of L (A): 

XF = (X(A~)X(A2)-.. X(Ap)), Jv = diag(J(A~), J(A2), . . . ,  J(Ap)), 

where p is the number  of different eigenvalues of L(A). 

Note that J~ is invertible (since L (0)= I). Note also that the pair (XF, JF) is 

not determined uniquely by the polynomial L(A): the description of all finite 

canonical pairs of L (A) (with fixed JF) is given by the formula (XvU,.IF), where 

(Xv, JF) is any fixed finite canonical pair of L(A), and U is any invertible matrix 

which commutes with Jp. The finite canonical pair (XF, JF) does not determine 

L(A) uniquely either: any matrix polynomial of the form V(A)L(A), where 

V(A) is matrix polynomial with d e t V ( A ) - - - c o n s t # 0 ,  has the same finite 

canonical pairs as L(A). In order to determine L(A) uniquely we have to 

consider (together with (XF, J~)) an additional canonical pair (X~, J~) of L (A) for 

)t = 0% which is defined below. 

Let  ~b} '), j = 0, 1, - - -, s~ - 1; i = 1,- �9  q be a canonical set of eigenvectors and 

generalized eigenvectors of the holomorphic (at infinity) matrix function 

A-tL(A) corresponding to the eigenvalue A = oo (where l is the degree of L(A), 

i.e. the maximal integer j such that L~ ~ 0). We use the following notations: 



136 L GOHBERG AND L. RODMAN Israel J. Math. 

x ~  = ( ~ ( o ' " "  ""'" '"~)  �9 ' " ~ )  " ' "  ~ o  ~ �9 ""~') ~ S l - - l W O  " " t ~ s 2 - - 1  " " ~ s q - - l ] ~  

J| = diag (J| J| �9 �9 �9 , J.q). 

where  J . j  is a ni lpotent  Jo rdan  cell of  size sj. N o t e  that  (X~, J~) is a canonical  pair  

of the  matrix polynomia l  /~ (A)=  AZL(A -1) cor responding  to the e igenvalue 

~ = 0 ,  

N o w  we define a canonical  pair  (X,J)  of L ( A )  as two matr ices X = (XFX| 

J = diag(J[),J~) of sizes n x nl and nt x nt. 

EXAMPLE 1.1. Cons ider  the matrix polynomial  

[ ( ol, L(A)  = 
; ~ + 1  

In this case we can put  down 

XF 

and 

Ii ~176 i1 ( [ !1! ] )  , J F = d i a g  1 , - 1  , 
0 0 - 0 

x:[i i1 J [i i] 
There fo re  a canonical  pair  for  L (A)  is given by 

[ 00 10 
x = ( X F X . )  = 

0 0 - 8  1 

J=diag(J~l,J|  1 - -  , 

0 

- 1 ,  

w 

Let  

Companion matrix and linearizations 

! 

L ( A )  = I + ~ AJAj 
j = l  

be a matrix polynomial  of  degree  l. The  matrix 
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R = 

0 I 0 . - -  0 

0 0 I . . .  0 

0 0 0 - - -  I 

- A t  -A~-I -Ai-2 . . . .  A1 

is ca l led  the  c o m p a n i o n  mat r ix  of  L (A). Us ing  the  c o m p a n i o n  mat r ix ,  we have  

two l inea r i za t ions  of  L (A). 

(a) L inea r i z a t i on  in the  f ini te  complex  p lane :  

B ( A )  = 

(1) 

where  

and  

I -  AR = B ( A ) . d i a g ( L ( A ) , / , . . . , I ) .  C(A) ,  

0 0 . . .  0 I 

0 0 . . .  I 0 

0 I . . .  0 0 

I A A 2 + A 2 A 3 + ' " + A H A I  " ' "  A A H + A 2 A t  hAl 

c(A) = 

0 0 0 . . .  I 

. . . .  h i  

0 I - AI . . .  0 

I - AI 0 . . .  0 

a re  e v e r y w h e r e  inver t ib le  ma t r ix  po lynomia l s .  I ndeed ,  by s t r a igh t fo rward  calcu-  

la t ion  we ob t a in  

h t - ' I  

h l -2 I  

C - ' ( A )  . . . .  

I 

and  

AI-2I " ' "  AI I 

A t - 3 I  " "  �9 I 0 

0 " ' "  0 0 

( I  - A R ) C - ' ( A )  = B ( h ) d i a g ( L  (h) ,  I , . . . ,  I ) .  

(b) L inea r i z a t i on  at the  po in t  oo: 

(2) A - ' I  - R = E(A-1)  �9 d i a g ( A - ' L  (Z),  I , . . . ,  I ) - F ( A - ' ) ,  



138 I. GOHBERG AND L. RODMAN Israel J. Math. 

where  

and  

E(A)  = 

0 0 . . .  I 

0 I - . .  0 

I - (AI + A , )  . . . .  (A ' -a I+ A ' -Z A ,+  . .  . + A , _  0 

F(A i = 

I 0 . . .  0 0 

0 0 �9 �9 �9 AI ---I 

0 AI - . .  0 0 

AI - I - . .  0 0 

are  e v e r y w h e r e  inver t ible  matr ix  polynomials .  Indeed ,  a s t ra igh t forward  calcula- 

F-'O) . . . .  

A H I  

tion gives 

I 0 - "  0 | 

AI 0 . . . .  I 

- I . . . .  A I-3I - A I-2I 

and 

(A-1I _ R)F-~(A-1)  = E(A - t )d iag  (A-tL ( A ) , / , . . - ,  I ) .  

N o t e  that  if ( X , J )  is a canonical  pa i r  of  L ( A )  then  J and  R are  similar.  W e  

shall p rove  this la ter  in detail.  

w C o n n e c t i o n  w i t h  m o n i c  p o l y n o m i a l s  

T h r o u g h o u t  this sect ion let L (A) be  a comonic  matr ix  po lynomia l  of  deg ree  I. 

For  m = l, l + 1 , . . -  define a monic  po lynomia l  L,~ (A) = A ' L ( A  -t)  of deg ree  

m. (By definit ion, a matr ix  po lynomia l  is monic  if its leading coefficient is L) W e  

shall deno t e  the  co lumn matr ix  

T1 

T2 

Tp 

by coI(Tj)~'=~. A pair  of  mat r ices  (X,,,Jm) (where  .~ ,  is an n x mn matr ix  and J~ 
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is an mn x mn matr ix)  is cal led a s tandard  pa i r  for  the monic  polynomial /~m (h)  

if col(X,,J~-~)~'~ is inver t ible  and  if the  following r ep resen ta t ion  holds: 

where  

s  (,~) = x -~  - X'. ( J . ) ' ( v ,  + v~a + . . .  + v . x - - b ,  

( V l  W 2 W m )  " "1--1 ra --1 . . . .  [ c o l ( X , J ,  )i=,] �9 

For  m o r e  in fo rmat ion  abou t  s tandard  pairs of  monic  matr ix  po lynomia l s  we 

refer  to [1]. 

In this sect ion we find the connec t ion  be tween  canonical  pairs  (X, J )  for  L (h.) 

and s tandard  pairs  (Xm, J, ,)  for  /Z,, ()t). 

Cons ider  first the case m = l and deno te  i (A) = / ~  (h).  Then  the key  t h e o r e m  

of this p a p e r  is 

THEOREM 3.1. Every canonical pair (X ,J )  for L(A ) is a standard pair for 
s  

PROOF. Let  X = (X~X~), let J = diag(J~J,J |  and  let A = (XoXl... x , ) b e  a 

Jo rdan  chain for  L ( A )  t aken  f rom Xr ,  and  cor respond ing  to the  e igenva lue  

h ~ 0. Le t  

;to 1 0 " ' "  0 

K =  0 ;to 1 " ' "  0 

0 0 0 " ' "  ho 

be  a matr ix  of size (r + 1) • (r + 1). T h e  co lumns  of A �9 K -t'-l~ = fi~ = ( s  �9 �9 �9 ~,) 

again f rom a Jo rdan  chain for  L (h) ,  and replacing A by fi, in X~, we obta in  

a no the r  canonical  set of e igenvec tors  and genera l ized  e igenvectors .  

Le t  R be the  c o m p a n i o n  matr ix  of L(A) .  If the vectors  Y = (y0yl" �9 �9 y,) are 

def ined by 

21 y , =  [(C-1)~ [col (Sk,~,_j)~ =,], i = 0 , 1 , . . . , r ,  
i=0 

then (as follows f rom (1)) Y is a Jo rdan  chain for  I - AR cor respond ing  to the  

e igenva lue  ;t0. Now as 

ht-~I 
C - 1 ( / ~ . )  = h'-2I 

. ,  o 

I 

h i  21 " �9 �9 h i  I 

hl -3I  "" " I 0 

0 " ' "  0 0 
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we have: Y = col(AK'-J-')~-~. 
It is easy to check that the columns ut, j = 0, 1 , . . - ,  r of YM(Ao) (where 

M(Ao) = ( ( -  1)J({--I)X~*')~.t=o and it is assumed that (--~) = 1 and (9 = 0 for q > p  or 

q = - I  and p > - l )  form a Jordan chain for A I - R  corresponding to the 

eigenvalue A 01. Using the linearization (2) we obtain that the vectors to, tl," �9 ", tr, 

where ti = F(Aol)u, + F'(Aoa)U,+a, i = 0 , " ' ,  r (by definition u-1 = 0), define a 

Jordan chain for. the polynomial d i a g ( L ( A ) , / , . . . , I )  corresponding to A o 1. 

Taking the first n components of the n/-dimensional vectors t,, we see that the 

columns of ,4Kt-'M(Ao) = AM(A0) form a Jordan chain for s (A) corresponding 

to A 01. 

Applying this construction to every Jordan chain from XF, we obtain a set of 

eigenvectors and generalized eigenvectors of L(A) corresponding to the non- 

zero eigenvalues. It is not hard to see that this set is a canonical. 

Let Xr = ( X I X 2 . "  X,) and JF = diag(J? 1, j ~ l , . . . ,  j s l ) ,  where Xt is the j-th 

Jordan chain of Xr, and Jj is the corresponding Jordan matrix with eigenvalue 

Aj~ O. Then 3~ = (X1. M(A1),---, Xs �9 M(A,), X| is a canonical set of eigenvec- 

tors and generalized eigenvectors of/_: (A) with corresponding Jordan matrix 

J = diag (Jl + (A 11 - -  /~ 1)I, " " ", J, + (A ~-1 -- AS)I, J~). 

Theorem 2 of [4] states that 

[ / ~  ( /~)1--1  = X'(AI - j ~ ) - i  

whenever X" is a complete canonical set of eigenvectors and generalized 

eigenvectors of/S (A), and ] is the corresponding Jordan matrix. Theorem 14 of 

[2] then assures that (X', J)  is a standard pair for/7, ()t). 

The identity (which follows from the definition of M(At)) 

JjM(ht)[Jj + (A~ -1- At)I] = M(At) 

implies that X = X M  -1, J = MJM -1, where M = diag(M(h0,  �9 �9  M(As), I), and 

therefore that (X, J)  is a standard pair for s (;t). 

REMARK. A Jordan form for diag (j~l, j| can be included in a canonical pair 

for /_~(A). Namely, (X . diag (M, I), J)  is a canonical pair for L(A), where 

X = (X~X| and ] = diag (Jr, J~); the matrix Jr is obtained from Jr by replacing 

At by A~-' on the main diagonal of Jr;  the matrix M is defined as in the proof of 

Theorem 3.1. Note that MJrM -1= j7l. 

EXAMPLE 3.1. Consider Example 1.1. Then, for this example, the matrix M 

defined in the proof of Theorem 3.1 is equal to 
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M: iag(1 [ I i]1) 
and the canonical pair (X, J )  of L (A) given by 

1 0 0 1 0 00] 
X = 

0 0 0 - 8 1  

J = d i a g  1 - , - 1 ,  
0 

is at the same time a standard pair for the monic polynomial 

[ A 3 - 3 A ~ + 3 A -  1 h 2 ] 
) = A 3L (X - ' )  = 

0 h 3 + h  z 

We consider now the case m > I. Divide the matrices X',~ and J.. into two 

parts: X,. = (3<,.o)(,. ~), J,~ = diag (]..o, Jm 1), where the subscript 0 denotes the part 
corresponding to the eigenvalue 0 of /~ ,  and the subscript 1 denotes the part 

corresponding to the non-zero eigenvalues of/Sin. 

Let (X'~,Jt) be a standard pair for /~t with Jordan matrix it0 = 
diag(J~l),J~2), .- -,J~')), where ]o) is a nilpotent Jordan block of size Kj, j = 

1 , - - . ,  r. Let Xt0 = (AT~')XI ~)' '" XI ')) be the corresponding partition of Xto. Then a 

standard pair (X,,,J,,) for /~ , , (A) ,m > l, is given by the following formulas: 

/~ml = /~/1; L 1  = Jil; LO = diag (.f~), J~), "'" , J~)), 

where ]~) is a nilpotent Jordan cell of size k i + (m - l) (by definition ki = 0 for 
. />  r) and 

Xrn0 = (x~l)Om-/l~2)Om-I ~ ~ ~ 2~r)Om--lOlr+10m l I ~176 O~ttOrn--/--1), 

where Ok denotes k columns of zeroes, and a,+l, a,+2, �9 �9  a ,  is a basis of some 

direct complement of Ker/~t (0) in C,. 

Indeed, from the representation/_~,, (h) = A "-l/_~ (h) it is easily seen (from the 

Smith form) that J,. has the structure mentioned in the statement above. To 

complete the proof it remains only to notice that u0, u l , ' - ' ,  u~,O,.-- ,0 (m - l  

zeroes) is a Jordan chain for/S, , (A) for every Jordan chain Uo, U l , . . . , u ~  for 

/],~ (A) corresponding to the eigenvalue O, because 
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1 1 /~ o+m_,)(0)" 
j-~ s176 = (j + m - 1)! 

w 

Let 

Basic pairs 

I 

L(A) = I +  ~ A~A, 

be matrix polynomial of degree _-< l, and let R be its companion matrix. 

A pair (Q, T) of matrices is called a basic pair for L(A) if Q is a n x nl matrix, 

T is a nl • nl matrix, and for some invertible nl x nl matrix S, Q = ( I0 .  �9 �9 0)S 

and T = S-1RS .  Note that if (Q, T) is a basic pair for L (A) and S is invertible, 

then (QS,  S - I T S )  is also a basic pair for L(A). 

THEOREM 4.1. Le t  ( X , J )  be a canonical  pair  for  L(A). Then  

(3) (col (XJ')l-_~o)J = g (col (XJ')121o) �9 

In  particular, J and  R are similar, and the pair (X ,  J )  is a basic pair  for  L (A). 

PROOF. The equality (3) is equivalent to 

X J  t + A~X + A H X J  + �9 �9 �9 + A I X J  t-I = 0 

(since ( X , J )  is a standard pair of the monic polynomial/~(A) = A~L(A-1)), and 

the last equality is proved in [1]. The invertibility of col(XJJ)];_~ is proved in [1] 

as well. 
This theorem coupled with the results of [1] implies that the following 

properties are equivalent: 
(i) (Q, T) is a basic pair for L(A); 

(ii) (Q, T) is a standard pair for /~(A) = A'L(A-~); 

(iii) col(QTJt-~)i=o is invertible and 

Q T  a + A 1 Q T H  + " " + A I Q  = O. 

Note that T is the second matrix of a basic pair for L(A) if and only if the 

following two linearizations hold: 

(4) diag (A -~L (A), I , - - . ,  I )  = G1(A -1)(A -1I - T)G2(A ~), 

(5) diag (L (A), I , . . . ,  I )  = Ha(A) (I - A T)Hz(A), 

where G 71(A), G ~l(A), H~(A) ,  H ~ ( A )  are matrix polynomials. The lineariza- 
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tion (4) (but generally speaking not (5)) is sufficient to ensure that T is the second 

matrix of a basic pair for L (A). 

To illustrate the theory let us now consider the differential equation 

(6) 

and the difference equation 

(7) L (A)g, = 0; Ag,=g,+l, r = l , 2 , . . . .  

Let (Q, T) be a basic pair for L(A), and let A be the kernel of the projector 

1 f~ (xt- T)-'aX, 

where e > 0 is small enough. Then the general solution of (6) and (7) is given by 
the formulas 

(8) f(t) = O'exp[t(T/A)-l]x, x E A; 

g,=O(TIA)-'- 'x,  x e A ,  r=1,2 , . . . .  

Indeed, substituting f(t) from (8) into (6), we get 

L ~- f(t)= O . e x p ( t r - 1 ) + ~ . A ~ O r - J . e x p ( t r  -~) x 
j=l  

I 

= (QT'+ ~'~ A, OT'-') T-' .exp(tT-~)x : 0 .  
]=1 

It is easy to see that the solutions f(t) given by (8) form a k-dimensional vector 

space, where k = dimA. Note that dimA is just the degree of det L(A), and since 

the dimension of the solution space of (6) is equal to the degree of det L (A) (see 
[4, 5]), every solution of (6) has the form (8). The proof for the equation (7) is 
similar. 

05. Representation of matrix polynomials 

Using Theorems 3.1 and 4.1 and the representation theorems proved in [1, 2] 

for monic polynomials we are able to find representations for comonic polyno- 

mials: let L(A) be a comonic polynomial and let (Q, T) be a basic pair of L(A); 

then L(A) has the right standard form 

L(A) = I -  QTJ(V1At+ V2A~-~ + . . .  + VtA), 
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where ( V I V 2 . . .  V t )=  [col(OTJ)lT.g] -1, and the left standard form 

L(A) = I - (A'W~ + A'-'W2 + . . .  + AWt)TtY ,  

where Y = [col(QT')J-~] -~. col(Sj,I)J=l and col(Wj)J=~ = (Y, T Y , . . . ,  T ' - I Y )  -~. 

In particular, for each canonical pair (X, J )  for L(A), the identity 

L(A) = I - X J ' ( Z , A  ' + Z2A'-' + . . .  + ZtA) 

holds, where (Z~Z2 . . .  Zj) = lcol (XJOJ%]-'. 
Indeed, since (Q, T) is a standard pair for/~(A),  the right and left standard 

forms for L(A) follow from the right and left standard forms for the monic 

polynomial L(A) (theorems 1 and 3 of [1]). The representation using the 

canonical pair (X, J )  then follows from Theorem 3.1. 

THEOREM 5.1. Let L~(A) and L2(A) be comonic matrix polynomials each of 

which is of degree <-l. Let (Xs, Js)=((Xj~Xs=),diag(J~,Jj| j = 1,2, be a 

canonical pair for Lj (A) which is partitioned into finite and infinite parts. 

I f  X~): = X2~ and J~F = J2P, then the quotient of the division of L,(A ) by L2(A ) on 

the right is an everywhere invertible matrix polynomial of degree ~ max (% l) + 1, 

where 3/is the smallest positive integer such that J~| = J~| = O. 

PROOF. We divide L~(A) by L2(A) on the right using the right standard form 

as described above. The process of division is similar to that which is described in 

theorem 6 of [1]. 

We have: 

L, (X) = I - X J ~ ( V , , , X  ' + V 2 , X  ' - '  + . - .  + V,,X), 

where ( V l j V 2 s ' "  V~s)= [col(Xfl; ')I=,]-'. 
Let 

F,~o = XIJrVol ,  G,~a = X2J~V~z, g = l , 2 , . . . , l ;  

and 

j = 1, 2, 

a = 0 , 1 , 2 , . . . ,  

i - 1  

qb(k, i) = G,+,.,-k- F~,,-,-k- ~ F,.,-jG,.,-1-,.,-k, 
j = O  

k = 0 , 1 , - " , 1 -  1; i = 0 , 1 , 2 , . . . ,  with the understanding that Gp~ = Fp~ = 0 for 

i -< 0. Then 

/--1 

j = o  j = o  

Hence it is sufficient to prove that (I)(k, i) - 0 for i -> max(y, l). 
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By the definition of 3, it follows that X1J~= X2J~ for every /~-> % since 

X1F=X2F, J l e = J ~ .  Moreover, Ft.~-~-k=0 for k = 0 , 1 , . - . , l - 1  and i_->l 

(because then l - i - k _-< 0). Therefore, under the assumption i _- max(% l) we 

have: 

i--1 

d~(k, i) = O, . , . , -~-  ~ F,.,-jO,§ 
j = 0  

l - 1  

l+ i  / + i - l - /  X2J2 Vt-k,2 E XlJ1 gl-j,1 = - �9 X2J2 Vl-k.2 
j=O 

I+ i  ( = X2J2 Vl-k.:-- X,J[  VI-i, lX1Jl1-1-1 J1VI-k, 2 
j=O 

I+ i  I + i  = X2Je Vt-k,2-XlJl  VI k,2=O. 

We are now able to solve the inverse problem, i.e. we are able to reconstruct a 

matrix polynomial given its finite and infinite Jordan chains. 

A pair of matrices (Y, K)  is called an admissible pair if Y is an n • p matrix 

and K is a p x p  matrix. 

THEOREM 5.2. Let (Y, K)  and (W, Ko) be admissible pairs with an invertible 

Jordan matrix K and a nilpotent Jordan matrix Ko which are such that the matrix 

WKo )j=o is square and invertible for some integer l > O. Then there col(YK j, l - l - - j  I--1 

exists a unique comonic matrix polynomial L (A) of degree <- I for which the pair 

(( Y W ) ,  diag(K -1, K0)) is canonical. 

PROOF. The desired polynomial L(A) is defined by L(A) = All(A-l),  where 

[.(A) is the monic polynomial of degree l represented by the standard pair 

( (YW) ,  diag(K 1, K0)). This is easy to check using Theorem 3.1. The uniqueness 

of L(A) follows from its right standard form. 

06. General triples 

We begin with the resolvent representation of the matrix polynomial L (A). 

THEOREM 6.1. Let L(A) be a comonic matrix polynomial of degree <- l, and 

let (X, J) be its canonical pair. Then 

L-I(A) = p T y ( I  -- AJ)-ly-1pi 

where p T =  ( 0 ' ' "  0 I), Y = col(XJ')~-~. 

PROOF. (X,J) is a standard pair for 
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s  = it 'L (A-'), 

therefore 

where 

[ s  (it)] -1 = x ( i t t  - 1 ) - ' z ,  

Z = [col (XJi)~Z-_~] -1" col (Sj,I)J =1 

(see corollary 1 of [2]). Using this equation and the biorthogonality condition 

XJJZ = 0 for j = 0 , . . . ,  ! - 2 ,  X J H Z  = 1, we see that, for it close enough to 

zero, 

t - ' ( i t )  = i t - ' [ s  = i t - ' * ' X ( I  - i t ] ) - ' z  

= it-,+lX( I + itj + i t z j z + . . .  )Z  

= i t - ' + ' x ( i t ' - ' J ' - '  + i t ' J '  + . . .  ) z  = x J ' - ' U  - i t J ) - ' z  

and the theorem follows. 

A triple of matrices (O, T, B)  (where O is an n x p matrix, T is a p x p matrix 

and B is a p x n matrix) is called a general triple for L(i t)  if L-~(it) = 

O ( I  - i tT)-lB. The integer p is called the order of the general triple (O, T, B'). 

Let ( Q , T )  be a basic pair for L(it).  Then ( Q ,T ,B)  with B =  

TH[col  ( Q T  i)J2~] -1. col (8i,I)~ ~1 is a general triple for L (it). It is possible to check 

that by repeating the proof of Theorem 6.1. We shall see that not every general 

triple is such an extension of a basic pair. 
As before, define the monic polynomial/~ (it) = it tL (it -1). A triple (0,  T,/3) is 

called a standard triple for /_~(it), if (0 ,  7") is a standard pair for /.',(it) and 

/~ = [ c o l ( O ~ ' - ' ) / = , ]  - ' .  c o l ( , ~ f l ) [ = , .  

The following lemma gives a partial description of general triples. 

LEMMA 6.1. Let (0 ,  ] ' ,B) be a standard triple for// ,(it) .  Let X and Y be 
square matrices such that X T " Y  = ~,+,-1, j = O, 1, 2 , ' . . .  Then ( QX, i", YB  ) is a 

general triple for L (it). 

PROOF. Expanding 

L - ' ( i t )  = it - '  [ s  (it -1)l-1 = 0 .  i t - ' * ' (1  - i t ~ ) - l ~  

as power series in it for small it, and using the biorthogonality condition 

()7"J/~ = 0, ] = 0, 1,. �9  l - 2, one can easily check that this expression coincides 

with Q X ( I  - itT)-'Y/~. 
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Taking X = I in Lemma 6.1, we obtain exactly all the basic pairs (0 ,  I") of 

L(A). It is not hard to show that if ]" is invertible, then every general triple has 

the form described in Lemma 6.1 with X = I and Y = 7"~-', and therefore is an 

extension of a basic pair for L(A). It is not true for singular T as shows the 

following example. 

EXAMPLE 6.1. Let L (A) = I be a 2 x 2 matrix polynomial and let I = 2 (i.e. 

we regard L(A) as polynomial I + A �9 0 + A 2- 0). The monic polynomial L ( A ) =  

A2I has a standard triple (Q, T, B)  with 

[i ~176 i1 i] i]) 0 = , 2F = diag , , 
0 1 

0:co ([i ~ 
A triple (Q, T , B )  is a general triple for L(A) if and only if Q T J B  =0 ,  ] > 0 ,  

Q B  = I. So the triple Q = (1 0), T = 0, B = col(L0)  is a general triple for L(A) 

which is not an extension of a basic pair (because T is not similar to 2F). 

Note that it is possible to replace T by [oo] in the general triple (O, T, B). Note 

also that the general triple (Q, T, B)  satisfies the equation 

Q T  ~ + A ~ Q T  H + . .  �9 + A~Q = O. 

However  the knowledge of a general triple of a matrix polynomial allows us to 

calculate the coefficients of the polynomial and to find a general triple of a 

product. These properties which will be proved below partially justify the 

definition of a general tiple. 

THOEREM 6.2. Le t  

L(A) = I + ~ AJA, 
j = l  

be a matrix  po lynomia l  and let (Q, T, B )  be its general triple. Then the A j  are 

determined by the recursive fo rmulas :  

A I =  - Q T B ;  A ,  = - Q T ' B -  A , Q T J - ' B ,  j = 2 , . . . , l .  
1=1 

PROOF. Write 

(I  + AA1 + . . .  + A ' A , ) Q ( I  + A T  + A2T 2 + . .  �9 )B  = I 
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for A close enough to zero. Comparing the coefficients of A J, j = 1, 2 , . . . ,  l on 

both sides and using the equality QB = I, we obtain the desired formulas. 

THEOREM 6.3. Let L,(A), L2(A) be comonic matrix polynomials having gen- 

eral triples (Q,, T,, B,) and (Q2, 7"2, B2) respectively. Define matrices Q, T, B by 

O = ( O , O ) ,  T =  , B = . 
7"2 I T2.B2 

Then (Q, T, R )  is a general triple of the product L2(A)L,(A). 

PROOF. The proof is similar to the proof of theorem 5 of [1]. We have: 

- AT)-' = [ ( I  - AT,)-' A(I - AT1)-'B,Q2(I - AT2)-'] 
(i 

L J 0 (I - AT2)-' 

(this can be seen writing ( I -  A T ) ( / -  AT) -1 = I). Then [o] 
O(I  - AT)-' = AQ,(I - AT,)- 'B,Q2(I - AT2)-'B2 

B2 

= AL ~'(A)L2'(A). 

On the other hand, for A close enough to zero, [0] 
Q ( I  - AT)-' = AJQT i 

B2 = B2 

= A �9 ~ AJQTJB = A Q ( I -  AT)- 'B.  
j~o 

By comparison with the preceding formula, the result follows. 

07. Divisors of a matrix polynomial 

In this section we give a description of all the comonic divisors of a given 

comonic polynomial L(A) of degree I. 

For two given positive integers k, and k2, let Div(k,, k2) be the set of all right 

comonic divisors M()t) of degree _-< k, such that the quotient L(A)M-'(A) has 

degree _-< k2. This definition makes sense only if k, + k2 --> I. As before define the 

matrix polynomial L ,  (A) = A "L(A -1) for integer m -> I. 

We say that the two right divisors M,(A) and M2(A) belong to the same class if 
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MI(A) = V(A)M2(A) for some matrix polynomial V(A) which is invertible for all 

A E C. According to Theorem 5.1, two divisors belong to the same class if and 

only if they have canonical pairs with the same finite parts. 

Now fix two positive integers kl and k2 such that kl+k2>= l and let 

m = kl+ k2. Let (X,J) be a canonical pair for L(A). Then (as in w the pair 

(X, J)  can be extended to a standard pair (X,., J,,) for the monic polynomial 

//,,, (A). It is clear that M(A)E Div(kl, k2) if and only if .~/(A)= A kIM(A -1) is a 

right monic divisor of the polynomial s (A). According to [1], each monic 

divisor/~(A) is defined by an invariant subspace A of J,, for which the matrix 

col(X., (J., I Ay)~'~ 1 is invertible: 

kl-1 

M(A) = ~ kq _ xm (Jm/A) ~'- E A,v,, 
j=0 

where [col (X,, (J,, I A) j)~'~1]-1 = (V0 VI '-"  Vk,-1). Conversely, each such invariant 

subspace A of J,, is defined by a monic divisor of degree kl of L,. (A). The 

subspace A is called the supporting subspace of ~/(A). We shall say that A is also 

the supporting subspace of the right divisor 

kl-1 

M(A)=I-X . , (J , .  IA) k,. Z Ak'-'VJ 
j=o 

of L(x) .  

We now describe the classes of divisors of L (A) in terms of the supporting 

subspaces. Let O be the kernel of the projector 

1 f~ (xt-Jm)-'dX P=2--~i ~f=~ 

where e > 0  is small enough. For every invariant subspace A of J,,, the 

intersection A Yl O will be called the O-projection of A. A pair of divisors 

M(A),N(A)EDiv(kl,  k2) belongs to the same class if and only if the O- 
projections of their supporting subspaces coincide. Indeed, define ~ / (A)= 

A k~M(A-1) and ~l(A) = a k1N(A--1). It follows then from the proof of Theorem 3.1 

that M(A) and N(A) belong to the same class if and only if M(A) and/V(A) have 

the same non-zero eigenvalues and the same corresponding Jordan chains. The 

last condition is equivalent to the coincidence of the projections of the 

corresponding supporting subspaces, because 11 is the maximal invariant sub- 

space of J~, such that Jm I O is invertible. 

The following example shows that the set Div (k i, k2) does not always contain 
a representative from every class of divisors. 
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EXAMPLE 7.1. Let L(A)= diag((A - 1 )  2, (2A -1)2). Then it is easy to check 

that Div(1,1) contains only one divisor: diag(1-A, 1-2A) .  But the right 

comonic divisor diag (1, (2A - 1) 2) of L (A) does not belong to the class of divisors 

Oiv(1, 1). 

For kl + k2 large enough, the set Div(kl, k2) contains a representative from 

every class of divisors. This statement can be easily proved by considering the 

Smith form. That will be analysed in more detail in the next part of this paper. 

08. Decomposition into linear factors 

Our final result concerns polynomials for which all the elementary divisors are 
linear. 

Let L(A) be a comonic matrix polynomial of degree l, and let (X,J) be its 

canonical pair. If J can be diagonalized, then L(A) can be decomposed into a 

product of l linear factors. Indeed, denoting /~(A)= A%(A -1) we have the 
following decomposition: 

I 

s  = 1-I (AI + z ] )  
]=1 

for some matrices Z1, Z2, . . . ,ZI .  This is a corollary of theorem 12 of [1]. 
Therefore, 

1 

L(A) = 1-I (I + AZ,). 

This in turn implies the following result: if the degree of det L(A) is nl - 1, and 

all the elementary divisors of L (A) are linear, then L (A) admits a decomposition 
into a product of 1 linear factors. 

Note that there exist comonic matrix polynomials which do not admit any 

decomposition into a product of linear factors; 1~2 [01 ] serves as an example. 
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